
P e r g a m o n  

Z App/. Maths Mechs, Voi. 60, No. 4, pp. 639--645, 1996 
Copyright © 1996 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
PII:  80021--8928(96)00080-9 0021--a92a~ STA..o0+0.00 

ON THE ROLE OF THICKNESS COMPRESSION 
IN SHELL DYNAMICSt 

J. D. K A P L U N O V  and  E. V. N O L D E  

Moscow 

(Received 15 March 1995) 

A thin elastic shell under a transverse surface load is considered. The three-dimensional equations of the theory of elasticity are 
analysed asymptotically. The range of parameters of the problem is determined for which the effect of thicknes~ compression 
cannot be neglected eve:a in the roughest approximation. Copyright © 1996 Elsevier Science Ltd. 

An asymptotic analysis of the three-dimensional static problem of the theory of elasticity in the case 
of a thin shell shows [1] that thickness compression is a second-order factor. However, this conclusion 
cannot always be extended to the dynamical case. For example, studies of the scattering of a plane 
acoustic wave by a spherical or cylindrical shell [2, 3] show that the form of partial mode resonances 
corresponding to a membrane wave (a symmetric null wave of l amb type) will be severely distorted if 
the thickness compression of the shell by the acoustic medium is neglected. To fully understand 
phenomena such a,; those observed in [2, 3], in this paper we carry out an asymptotic analysis of the 
three-dimensional o~]namical problem of the theory of elasticity in the case of a shell of general form 
with loaded face surfaces. A similar problem for a shell with free face surfaces was considered in [4]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

We will take the equations of motion of a shell, considered as a three-dimensional elastic body, in 
the form [1, 4] 

a 2 

R 

. _ I / ~  , , 2  

Eaje  i = ai't i -- Vaj'¢ j -- V'g 3 

E ~v 3 
"--~ ata2 w = X 3 - vat ' t ,  - va2 x 2 

E t)o i 
R'q aiaj  - - ~  + Eaigi  -- 2(1 + v)aixi3 

E a i m i + E a j m  i = 2 ( l + v ) a j ' t  O ( i ~ : j = i , 2 )  

(1.1) 

Here 

11 - q r l  ~x i I ~xij q.. q "  ] 

1 

I xt x 
R ,R, Ri) 

tPrikl. Mat Mekh. "v01.60, No. 4, pp. 644--650, 1996. 

639 



640 J .D.  Kaplunov and E. V. Nolde 

rl - q ( 1  o~13 I ~23 q-. q-.  ] 
F =  

/ 

" q - q (  1 3U i - , ~ U3 ~ 
ei =-"Z-1"7- 'z '7".  + l] ' tkiu j + ~'1" ) 

)  qk;o j 

( = R, / R, c, = e4-eT , = h / R 

"~i =ajGii, "[ij =aiOij, '~i3 ='[3i =ajGi3, "C3 =ala2G33 

ai=l+_~_7~.;, k ; = R k i  = 1 OA i 
Ri AiA j O~ jo 

(1.2) 

where oft (k, l = 1, 2, 3) are the three-dimensional stresses, v,, (m = 1, 2, 3) are the three-dimensional 
displacements, h is the half-thickness of the shell, R is the characteristic radius of  curvature of its median 
surface, A i and Ri  are the coefficients of the first quadratic form and the principal radii of  curvature of 
the median surface, ki  are the geodesic curvatures of the coordinate fines of  the median surface, E is 
Young's modulus, v is Poisson's ratio, p is the density, q is the variability index, and a is the dynamics 
index. 

The dimensionless variables ~/, ~ and x are related to their dimensional counterparts ¢tt and t (oq are 
the parameters of  the curvature lines on the median surface, tx 3 is the distance to the median surface 
measured in the normal direction, and t is the time) by the following sealing relations 

oti = Rrlql~i, ¢x 3 = l?rl~, t = Rc'~%l°X (1.3) 

It is assumed that the relative half-thickness rl of the shell is small and differentiation with respect 
to the dimensionless variables does not affect the asymptotic order of the required quantities. In addition, 
the inequalities 

q < 1, a < ! (1.4) 

which are usual in two-dimensional shell-theory [4], are imposed on the variability index and the dynamics 
index. 

We will consider the case when the variability index and the dynamics index are related by the 
formula 

q = a (1.5) 

and normal stresses -7-q~ are applied to the face surfaces ~ = _+ 1 (tz3 = - h) of the shell, i.e. 

' I 
ala2 [~=±l 

(1.6) 

To fix our ideas, we shall assume that I q ~ -  q31 and I q ~ -  q3 [ are commensurable. The last condition 
corresponds to a very general situation including, in particular, the case of  a shell loaded on one of  its 
face surfaces. 

When there is no load on the face surfaces, Eq. (1.5) corresponds to moment-free vibrations (vi - 
va) when q = 0, and tangential (or planar) vibrations (vi ~" v3) when q > 0 [4]. When the face surfaces 
are under load, this equality means that forced vibrations are considered for which the relationship 
between the frequency and the wavelength is the same as for free vibrations. 
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Fig. 1. 

In the case of a 'Lransverse load there are two different mechanisms for exciting vibrations described 
by condition (1.5): omnidirectional compression and thickness compression of the shell by the load. In 
symbolic form (see Fig. 1) the first term on the right-hand side corresponds to omnidirectional 
compression and the second one to thickness compression. A priori one can expect that the effect of 
thickness compression will be negligible at fairly low frequencies, when the stress-strain state (SSS) of 
the shell is close to the static moment-free state [1]. As the frequency increases, when the strain 
wavelength becontes much shorter than the characteristic linear dimension of the shell, the role of the 
curvature of the median surface becomes secondary and the shell degenerates into a plate in the well- 
known sense. At such frequencies the effect of omnidirectional compression becomes negligible. Indeed, 
in a plate under a transverse load, vibrations corresponding to condition (1.5) (vibrations in the plane 
of the plate) are generated due to thickness compression alone (see, for example, [5]). 

It is obvious that omnidirectional compression and thickness compression may turn out to have 
opposite effects. Thus, in the example shown in the figure omnidirectional compression shrinks the 
median surface o1:" the shell and, conversely, thickness compression extends it. Furthermore, it can be 
shown that omnidirectional compression predominates when q = a < 1/2, thickness compression 
predominates when q = a > 1/2, and they may compensate one another when q = a = 1/2. 

2. ASYMPTOTIC INTEGRATION 

We shall take the asymptotic form of the SSS of the shell in the form 

I) i ~- e('f~q-bl) : + ]]qo ?) ,  V 3 = e (~ l -b l )  ~ +'l~2q-Ild~) 

-b • o "ti = E( 'q  "[i + Xi )' "Cij = E(~-bT'~ + T'~ ) (2.1) 

-- E ( ~3-  3q-b,to "Ci3-- q i3+]~1-q'c~3), x3=E(x~+X~) ( i ; e j = l , 2 )  

b = l - 2 q  ( q < ~ ) ,  b=0  (q>--~) 

Here it is assumed that the quantities with superscripts e and o have the same asymptotic order, the 
quantities with superscript e being even and those with superscript o beink'odd functions of ~. The set 
of variables S s = {v~, v~, ~/, ~0, ~/3, ~3} and S a= {v °, v~, ~/, ~#, 43, ~3} define, respectively, the symmetric 
and antisymmetfic SSS with respect to the median surface of the shell. 

The asymptotic form (2.1) corresponds to vibrations such that v3 ~ vi when q > 0, unlike the similar 
expression in the case of free vibrations [4]. 

Substituting (2.1) into (1.2), we obtain 

= E ( .q3-4q~ F o + rl I-2v F • ), ei = rl-b e~ + e ° (2.2) F 
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l Oui p ~lqk;v], gp = l Our v f  (2 .3)  

fit=T°=2q-l+b, ~°=T~ = l - b  

where p can take values e or o. 
Now we substitute (2.1) and (2.2) into the original system of equations (1.1). Taking into account 

that the variables in (2.1) and (2.2) are odd or even, neglecting terms of order e = O(rl + rl~-~) compared 
to unity, and using (2.3), we arrive at a dosed system of equations for ~, ~i, ~ ,  x~3 from the set S ~ and 
also for v] and ~ from S a. It has the form 

_~v:_  a nt_~t: ~ a¥~ 

~;=0, ~; =0, a;---0 
e~ =~--V%~--vl~b~, m~ +m~ =2(I+v)x~ 

(2.4) 

The remaining unknowns can be expressed in terms of the variables in (2.4) by the system of equations 

V • 

t, Rj R, R i ) 
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m i +mr =2(I+v)%#j+r I ~l---~-mi ---~-, m/+------~---x#! 

LRi R~ R~ j 

The term ~3, which is asymptotically of order two, does not appear in (2.4) or (2.5). To determine 
this term we must refine (2.4) by introducing terms which are asymptotically of order two. However, 
we shall not consider this here. 

Using (2.1), we rewrite the boundary conditions on the face surfaces to within an error E as follows: 

xa[¢=±,-- ',~[¢=±, =0  (2.6) 

el I ÷ 

~3[~=±~='~'(-q3 +q3), ~[~=±l=T~E(q+a +q ~) 
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We now integrate over the thickness of the shell. The integral of the system of equations (2.4) satisfying 
boundary condition,; (2.6) can be represented in the form 

u;'=u,.o' v~=Vxo, x~=X~.o, "t~='CO,o, ~:~=~3.o (2.7) 

~ ! ; = ~ 3 . 1 ,  e ~ = e c o ,  m 7 = m , . 0 ,  g;=g,.o, I~=!.,.o, L '~=L 0 

The functions with a comma in the subscript are independent of the transverse coordinate ~ and are 
related by the equations 
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(2.8) 

which are a system of 17 equations for the 17 unknown two-dimensional functions from (2.6). 
The integral of the system of equations (2.5) satisfying boundary conditions (2.6) has the following 

form 

~S:*,3.o+~;2~3.2,  ,~'=C/,. , ,  ,,,, :O" , . , ,  o _  " g ,  - ~ i . , .  ~ : ~ . ,  

(2.9) 

The two-dimensional functions in (2.9) satisfy the equations 

b 
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1 i~l:i.l 1 ~x#l  q , q , 
Li't = A'-T ~i "+ Aj ------:-'~j o-rl ki('ti., -'tj.l)+ rl ki (xO.l + Xli.i) 

t l a ~ , t  i I -b ( l  l ~ a ~ , o  

It can be shown that if the variables in (2.9) with a comma in the subscript are known, then (2.10) is a 
system of 18 equations for 18 unknowns. 

The form of (2.1) shows that x3 is asymptotically the main stress when q ~ 1/2 (b = 0). As follows 
from (2.7) and (2.8), its component symmetric with respect to the median surface is determined by the 
thickness compression (see the figure) to within the admissible error e and can be expressed by 

'¢; = ( - q ;  + q ~ ) / ( 2 E )  (2.11) 

It follows that when q 1> 1/2 thickness compression becomes asymptotically the main factor and cannot 
be neglected even in the roughest approximation. 

3. THE AVERAGED EQUATIONS OF MOTION 

We shall represent the two-dimensional equations obtained in Section 2 in terms of averaged 
characteristics (forces, displacements of the median surface, and so on). We will confine ourselves to 
Eqs (2.8). 

First we will introduce some notation [1]: T/are the normal forces, S# are the shear forces, ui  a r e  the 
tangent displacements of the median surface, w is the deflection, and ~ and to are the components of 
the shear deformation. From (2.1), (2.7) and (2.9) we have 

Ti = 2Eh'q-b'¢i.o, Sq = 2Elffl-b'ciLo, ui = R~q-bu i. 0 

w=-Rq2c"tV3.o, Ei =l]-b ei,o, ~=TI-b(mi.o +mj.e) 

In this notation, Eqs (2.8) take the form 

I BT i I- I ~Sij. ° I BAJ(Ti_Tj) + I ~A i h ~2ui 0 
AiOOt i " ~ j ~ j  A i A j ~  i A i A j ~ t j  ( S O + S j i ) - 2 p  "~'t2 = 

T2 . ~Zw ÷ - 
T, + . ~ _ 2 _ z p h ~  t : - ( q 3  +q3 ) T, 

2 E h  . . v h  . _ + E h  to 
r~ = l _ -Z~ , e~+v%~+ i_ -~ (q  3 -q3  ), s , /=  t + v  

I i)u, I a,~ w 

A, ~ ul +A_~_ ~ u2 
A 2 ~ t  2 Aj A t i~t, A 2 

(3.1) 

Apart from inertial terms Eqs (3.1) are identical with the static equations of moment-free shell theory 
in which thickness compression is additionally taken into account (the term proportional to (q~ - q~) 
in the elasticity expressions for the normal forces T/). However, whereas the term corresponding to 
thickness compression is asymptotically of order two in statics, when q = a I> 1/2 it becomes 
asymptotically the main term in dynamics. 
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4. E X A M P L E  

We will consider forced harmonic vibrations of an infinite circular cylindrical shell governed by the law 
exp(-/£'~t) (£1 is the mtgular fiequency), the shell being subject to a surface load uniformly distributed along the 
cylinder axis. Setting R1 ---> ~, R2 m R, u2 s~ u, 0t2 -~ or, ul = 0, 8/& = - / f l  in (3.1), we obtain equations in terms of 
displacements and introduce the dimensionless coordinate and frequency 

~=q"qoJR, A=Rc ~]qafl (a=q,A~O/~c , -1)  

We shall assume that q > 0. Then, neglecting all terms that are asymptotically of order two, we obtain 

c~2u 2 2 ~ - y + ( l - v  )A u R 3e-! c~F 

F = n ' -~v ( i  + v)(q~ - q D -  ^-2 (q~. + q D  

(4.1) 

The first term in the expression for F corresponds to thickness compression and the second term corresponds 
to omnidirectional o~mpression. As was to be e x p ~ e d ,  thickness compression cannot be neglected even in the 
roughest al~proximalion when q ~ 1/2_ 

If r = (q 3 + qg)/(q~- q3) is positive and independent of ~t (for example., when q~ = Q~:os (m~R) )  for q = 1/2, 
then the fight-hand :fide of (4.1) vanishes (F = 0) at the frequency 

A = 4 "  / [v ( l  + v)] (4.2) 

The condition • > 0 leads to the constraint ] q~ I > I q3 l, which shows that the frequency (4.2) only exists in the 
case when the amplitude of the load on the outer face surface of the shell exceeds the amplitude on the inner face 
surface. 

Note that when the frequency (4.2) is identical with one of the shear vibration resonances, that resonance will 
not be excited. A shnilar phenomenon can be observed, for example, in acoustic wave scattering by shells [2, 3]. 
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